TRANSFORMATION OF GRAPHS

TRANSLATIONS

- The graph of $y = x^2$ is drawn in red.
- $y = x^2 + 2$ has the same shape, but it has been shifted up the y-axis.
- $y = x^2 - 1$ has the same shape, but it has been shifted down the y-axis.

In general,
If $y = f(x)$ then
$y = f(x) + a$
shifts the graph up/down the y-axis by a units.

- The graph of $y = x^2$ is drawn in red.
- $y = (x + 2)^2$ has the same shape, but it has been shifted along the x-axis.

In general,
If $y = f(x)$ then
$y = f(x + a)$
shifts the graph left/right along the x-axis by a units.
REFLECTIONS

- The graph of \(y = x^2 \) is drawn in red.
- \(y = -x^2 \) has the same shape, but it has been reflected about the \(x \)-axis.

In general,

If \(y = f(x) \) then
\[y = -f(x) \]

is a reflection in the \(x \)-axis.

- The graph of \(y = x + 2 \) is drawn in red.
- \(y = -x + 2 \) has been reflected about the \(y \)-axis.

In general,

If \(y = f(x) \) then
\[y = f(-x) \]

is a reflection in the \(y \)-axis.
Enlargements

- The graph of $y = x^2$ is drawn in red.
- $y = 4x^2$ has been enlarged by a factor of 4 in the y-direction.

In general,

If $y = f(x)$ then $y = af(x)$ is an enlargement by a factor of a in the y-direction.
Graphical software Exercise

Draw each group using the same axes. The original graph is the first in the list. Note the effect on the original graph.

Translations
1. \(y = x \), \(y = x + 2 \), \(y = x - 1 \)
2. \(y = x^2 \), \(y = x^2 + 1 \), \(y = x^2 - 3 \)
3. \(y = x^3 \), \(y = x^3 + 3 \), \(y = x^3 - 1 \)
4. \(y = x^2 \), \(y = (x + 3)^2 \), \(y = (x - 2)^2 \)
5. \(y = x^3 \), \(y = (x+1)^3 \), \(y = (x -2)^3 \)

Reflections
1. \(y = x \), \(y = -x \)
2. \(y = x^2 \), \(y = -x^2 \)
3. \(y = (x + 2)^2 \), \(y = -(x + 2)^2 \)
4. \(y = x^2 + x \), \(y = (-x)^2 + (-x) \)
5. \(y = x^3 + x^2 \), \(y = (-x)^3 + (-x)^2 \)

Enlargements
1. \(y = x^2 \), \(y = 2x^2 \), \(y = 3x^2 \)
2. \(y = (x + 1)^3 \), \(y = 2(x + 1)^3 \)
3. \(y = x^2 \), \(y = (2x)^2 \)
4. \(y = 3x^2 + x \), \(y = 3(2x)^3 + (2x) \)

Combinations
1. \(y = x^2 \), \(y = y - 1 \) = \(x^2 \), \(y - 1 \) = \((x + 2)^2 \)
2. \(y = x^2 \), \(y + 2 \) = \(x^2 \), \(y + 2 \) = \(3x^2 \)
3. \(y = x^2 \), \(y + 2 \) = \(x^2 \), \(y + 2 \) = \(3(x - 1)^2 \)